If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1=4x^2
We move all terms to the left:
1-(4x^2)=0
a = -4; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-4)·1
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4}{2*-4}=\frac{-4}{-8} =1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4}{2*-4}=\frac{4}{-8} =-1/2 $
| (x)/(3)+4=10 | | 30+25x=45+18x | | 2x(x-5)=2x | | x+(x+4.50)+(x+5.75)=50.25 | | 5(5x−9)=205 | | Y=-4.9x^2+30x-40 | | 50.25x=4.5+5.75 | | (x+4)/(3)=10 | | 7(2x–5)=63 | | G(4)=1/2x-3 | | 2a/7=8 | | Y=4x^2+16x-1 | | 23p-4=10 | | 6.8x=6.8x= −3.9−(−8.9x−1)−2x−3.9−(−8.9x−1)−2x | | 3k^2-12k+5=0 | | 3a-6=87 | | (3x-5)+(6x)=180 | | 3s²(s-2)=12s | | (p)/(6)=(p+3)/(8) | | -10×+8y=10 | | g(×)=ײ+3 | | 2(2x-7)=16-2x | | 4+9d=16 | | x-5=8x-3x | | -1(2x+3)-2(x-1)=0 | | x2+7x+10=0* | | 2x+9=7x+24=180 | | 75-3.5x-4x+4x=6 | | 68+2x=70+1.5x | | 68+2x=70+1.5x. | | −(2x−4)=-12x-6 | | 9x+21=75 |